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Entropy of classical histories
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We consider a number of proposals for the entropy of sets of classical coarse-grained histories based on the
procedures of Jaynes, and we prove a series of inequalities relating these measures. We then examine these as
a function of the coarse-graining for various classical systems, and show explicitly that the entropy is mini-
mized by the finest-grained description of a set of histories. We propose an extension of the second law of
thermodynamics to the entropy of histories. We briefly discuss the implications for decoherent or consistent
history formulations of quantum mechani¢$1063-651X99)02606-9
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. INTRODUCTION S= mNaXS(;”(A);:(A)p' 1.3

Entropies are measures of the information missing from a .
coarse-grained description of a system. Different coarse- However. entrooy need not onlv anply to coarse-arained
grained descriptions give rise to different entropies. If an | ST Py ot only Mppy I 9
entropy is low at one time, it will have a general tendency to? ternéa\tlves at one mo'mfent In _tlme.f oreé genera y% OTe can
grow as its coarse-graining is translated forward in time.,?OnSI er the missing information of a sequence of alterna-
That is the second law of thermodynamics. ives at a succession of times. These are the entropies of

Usually, entropy is constructed from a coarse-grained degoarse—grainedistoriesof the system. A variety of such en-

scription at a single moment in time. For example, if all that TOPIes have been d(?S.CI'Ibéﬂig.,[3.—5]). and applied to mea-
is known of the state of a system at a particular time is its>Ures Of. coarse-gralnl_nbﬂf], gIaSS|caI|ty[6], anq effect[ve
total energy, the missing information is the entropy of thecompIeX|ty[7]. In theories which possess a notion of history

microcanonical ensembl— a quantity which is independent but lack a fixed r_10tion of tim_ésgch as certa_in formglatic_)ns

of time. If all that is known at a time are the expected valuesOf guantum gravm[S_]) the missing |nfo_rmat|on of histories

of the energy, number, and momentum densities, averag ay be_ the only notion o_f entropy ava|lable.. .

over volumes large enough to be in local equilibrium, then . In this paper we examine the entropy of hlstor|es for clas—_
ical stochastic systems — classical systems with a probabi-

the missing information per volume is the time-dependeni tic law of evolution(including deterministic evolution
entropy density of hydrodynamics. stic faw of evolution{inciuding dete stic evolution as a

The Jaynes procedufd,?] gives a general method for special case We use Isham's history spa¢#0,11] and a

constructing the entropy of a system at a moment of time. Té‘;enerallzatmn of the Jaynes procedure to give a unified view

illustrate, letM be the phase space of a classical system an8f several different kinds of entropies for histories and de-

700, XEM be he probabity duibon reresentng the (% 184100 Smeng e, e fusare it tumerl
state of the system. Suppo#€x) is a classical quantity P pies. Y,

whose expected valugd) is known, where mod_est generalization of the s_eco_nd law of the_rmodyn_amics
' applicable to the entropy of histories and test it in a simple
model. Our considerations are almost entirely classical, but
<A>:j dx A(X)p(X). 1.2 in Sec. V we point the way to generalizations for the
M guantum-mechanical case.

The missing informatiors is constructed by maximizing the
entropy functional Il. ENTROPIES OF HISTORIES

A. Histories and history space

S(p)=— J dxp(x)logs[p(X)] (1.2 We consider classical theories witmost generallya sto-
M chastic evolution law in a spadd through a finest-grained
5 net of N times separated by equal intervajs For this dis-
over all p(x) that imply the same expected value. In sym-cussion the spackl could be a configuration space of par-
bols, ticle positions, a spatial lattice, or a phase space. We denote
a point inM by x.
The cases whemM is a discrete space or a continuous
dpresent address: Department of Physics, Carnegie Mellon Unimanifold differ only formally, and can to a large extent be
versity, Pittsburgh, PA 15213-3890. treated together by using a common notation. We define
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That is, P, is the projection orM with projectionst,j1k in-

i f(X)ZXEEM Fo0 (213 serted at the timetg andl’s at all other times. In the discrete
case, the most general projectiBp can always be written as
whenM is discrete, and a sum of such chains:
Trf(x)=J dx f(x) (2.1b F’a(><)=al__§:j i Pa - ay(X), 2.7
M n

which allows the construction of marrative for each coarse-
rained history. For histories of the for(®.6) it would read
e system was imil att, thenAf,2 att,, ... ." In the
V=Tr(l), (2.10 continuum case there is a corresponding integral.
We assume that there is a probability law for the fine-
wherel is the unit function orM. V is an integer wheM is  grained histories, that is, a probability functigf(x) on M.

when M is continuous. This notation is suggestive for the
guantum-mechanical case to be treated later. We also defin

discrete and a real number whihis continuous. W(x) satisfies
A fine-grained history is described by a sequence of _ _
Xn, A=1,... N for each of the finest-grained net of times. W(x)=0 and T(W)=1. 2.9

Histories are therefore naturally thought of as living in a
classical “history space’M=M X - - - XM, with one factor
for each fine-grained time. A point i is denoted by, and
corresponds to a fine-grained history. This is the classical W (X) =P, (Xn|Xn—1)Pp(Xn—1]XN—2) - - - P (X2|X1) p(Xo),

Of course,W(x) may have special forms in particular cir-
cumstances. For example, for a Markov process

analog of the “history space” introduced by Isham, and used (2.9
so effectively in quantum theory by Isham and Linden
[11,5], and Isham, Linden, and Schreckenbgtg]. wherep(xo) is the distribution at the initial time aryl, (x|y)

A coarse-grained set of alternative histories is a patrtitioris the transition probability to arrive atin a time » having
of the setM of fine-grained histories into an exhaustive setstarted fromy. If M were a classical phase space, determin-
of mutually exclusive regions or classes. (The notion of istic evolution would be represented by Eg8.9) with
coarse-graining has many specific applications in physics.
See[9] for a convenient reference to some of thedeach p,(X|y)=8[x—x,(y)], (2.10
class is a singleoarse-grained historyWe can usefully in-

troduce projections onto these regions\of wherex, (y) is the phase-space poiptevolved by the time

7.
1 xec, The probability of a coarse-grained history is
P (x)= (2.2
0 xe&c,. P.=Tr(P,W). (2.19
A sequence of coarse-grained alternatives at a series &or example, in the case of a sequence of alternatives like
timest,, ... t, is an example of a coarse-grained history.Eq. (2.3 at a series of times, and a Markovian probability of
Suppose the alternatives at timeare whethex is in one of  the form(2.9),
a set of regions oM, {Af}, @=12,...,with volumes
Va,- We introduce projections on these regiondviyf pan--'%:j dx,- - - f XmF’Zn(Xn)
K 11 XEA‘;k X p(xntn|xn—1tn—1) ngfl(xn—l)' o
Pak(x)= 0 AK 2.3 )
r XEBqo X P (X1)p(X1ta|Xoto) p(Xo)
which satis
4 = [ @xCo X000 (212
P (X)PY, (X)= 8,0 PY (X) (2.4 . N
K “k Kk %k Herep(x't’[xt) is the composition of all th@,’s from t to

t’, tg is the initial time, andCan‘._al(xo) is defined to be

the probability of a coarse-grained histoay - - - a, given
that the system is initially atg.

and

Tr(PY )=V, - (2.5

. . . . . B. The entropy of histories
In this case, a coarse-grained history is a particular sequence

of regionsa=(ay, . . . ;) and corresponds to a projection ~ The Jaynes construction may now be applied in history
on M of the form space to give an entropy for histories. We introduce the en-

tropy functional[ 18]

a

— n 1
Pe=1X - XPg XIX.. . XPy X X1 (2.6 S(W)=—Tr(W log, W). 2.13
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The history space entropy {c,}) of a set of coarse- This is the entropy that would be obtained from the usual
grained alternative histories is then Jaynes constructiofil.3) with the addition of the constant
(N—1)log, V representing the missing information at all the

Snd{ca})=maxS(W)| 7 #=Tp,wy- (214  other moments of time. By contrast, the depth
W

In words, S; maximizes the missing informatioS over all

probability distributionsW on M that reproduce the prob- D p({P}) =, Pal0G; Pu— > Pulog[Tr(P)/Tr(1)]

abilities of the coarse-grained historigs,} following from @ @

W. (2.21
The important property oB,{{c,}) is that it increases on

coarse-graining. Specifically, suppos{ei} IS & C0arse- s the same as the-S that would be calculated from Eq.

graining of the sefc,}. That means thafc,} is a partition (1 3) \ithout extra terms. Note that if we use a dimension-
of the {c,} into larger classes, and ally invariant form S, by subtracting a term log/N as
= U c (2.19 suggested above, we would have the simple relationship

aea

Then, as with any Jaynes-type construction,

Shd{ca}) —log, VN=—D p({c,}). (2.22

Snd{Cah)=Snd{cah). (2.16
The proof is immediate from Ed2.14). The constraints for C. Other entropies of histories
{c.} contain those fofc,} but there are more of them. The  The history space entropy is not the only information
maximum therefore can only be less. measure that can be associated with histories. In the follow-

Since theP,(x) are mutually exclusive projections, an jng we discuss some others and the relationships between
expression foiS;s can be derived by carrying out the maxi- hem.

mization using Lagrange multipliers to enforce the con-
straints. The result is 1. Isham and Linden’s entropies

In their seminal paper on entropy in generalized quantum

Shd{Ca})=— ; P 1002 P+ ; P0G, Tr(P,). theory[5], Isham and Linden utilize history space to define a
(2.17  one-parameter family of entropies based on the decoherence

functional D(«,a’) for a decoherent set of coarse-grained

The maximum value oBys occurs for the coarsest-grained histories. Translated into the notation of this paper, their
set of histories where the only history with nonzero probabil-gefinition reads

ity is I X - .- X1. The maximum is
e =N log, V. (2.189

The minimum(which occurs for completely fine-grained his- diea) ; Pulog; pa+x§ PulogA Tr(P)/TH(D)].
tories is zero. (2.23
Another useful quantity is the Lloyd-PagelsP) depth
[3], defined as
As they show explicitly, forx=1 the entropy,({c,}) pos-

Dip({Cah) =557 Snd{Ca}) sesses the important property that it increases under coarse-
graining of the decoherent set.
= Pa10Gs Pa— >, Pulog[ Tr(P,)/Tr(1)]. As discussed by Isham and Linden, in the case of nonrel-

ativistic quantum mechanics, history space is a repeated ten-
(2.19 sor product of the Hilbert space of the system — one factor
i _ _ for each time. TheP, are projections on this space and the
This has a number of useful features. Itis a direct measure f,ce s defined as usual. However, their arguments can be
fjhe qurmaluon "} a set of h|st(cj)r_|e_s, I |s.|nvar|e:jnt un?erimmediately applied to the classical situations we have been
n:m::tnsflcma fti:]ansrori?aélcr)]n?, 6fmtimlt IS Invariant under re Ine'discussing(We shall return to the quantum-mechanical case
ent ot the Tine-graned net o €s. : .. in Sec. V) Indeed, any classical problem can be considered
To illustrate, consider the entropy of a history consisting . : .

. . . as a generalized quantum theory in which all sets of alterna-
of a set of alternative$P,} at a single moment of timé : N . ) |
This is tive  histories  decohere  automatically: D(a,a')

=p(a)d,, - The expression2.23 thus applies immedi-
ately in the classical case. The history space ent@pywe
Shs({Pa}):_Zﬂ P, 10g, pa+§ Pa 10G[ Tr(P,)] arrived at from the Jaynes construction correspondx to
=1, up to a possible overall renormalization. Isham and Lin-
+(N—1)log, V. (2.20 den mainly considex=2, but that should not obscure the
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fact that our history space entropy, defined through a Jaynekhat is, they are identical except for a constant factor that is
construction, is a special case of those that they consider. lihe missing information at the times not specified. Evidently,
Sec. V we will provide a Jaynes construction for this entropyS,,< Sy for the coarse-grained sets for which they are both
in quantum mechanics. defined.

2. Step-by-step entropy D. Dynamically constrained history space entropy

Consider the special case where the set of coarse-grained In constructing of the history space entroBy, the en-
histories consists of a sequence of sets of coarse-grained afopy functional (2.13 is maximized over all probability

ternatives at a series of times, . . . t,. For generality we  ,nctionsW(x) irrespective of whether they conform to the
assume that these sets are branch dependent, that is, the sete basic dynamical la is thus the missing informa-

at timet, may depend on the specific choice of sets at pregion in histories assuming we are also missing any informa-
vious timest;- - -t,_;. The projections at timé¢ then have o about the dynamics.

the form A dynamical law could be enforced by maximizig{W)
pk (2.24 only over theW that conform to it. For example, by maxi-
ak(akfl' ) : mizing over the form(2.9), keepingp,(x|y) fixed, we en-
force a particular Markovian dynamical law. The resulting
At any stage in the sequenke=1, ... n, one can construct entropySq{{c,}) we call thedynamically constrained his-
the Jaynes entropy of the set of alternati\{@é;k} condi- tory space entropyThe maximum in Eq(2.14) is carried out
tioned on a particular previous history_;, ...,x;. This  only over the initial distributiorp(x) with W(x) determined
is, following Eq.(2.20), by enforcing the subsequent dynamics explicitly. Evidently,
since this is a constrained maximum,
k
SPetlacy, - a) Sed{cah)=Snd{ca)). (229
_ —E o The entropySy{{c,}) is connected to another entropy of
o Payag_1.. 2092 Payla_y, ooy histories obtained by applying the Jaynes method used in Eq.
(1.3 to the initial p(x), but constraining the maximum not
+ wla oG AT PX (a1, ... ,ay)]}, Simply by the requirement that probabilities at one time are
;k Padoy. e % “k( Kt Dl reproduced, but probabilities of a whole set of histories. We

(2.25 call this theinitial condition entropy S({c,})-
' We can illustrate the construction &; in the case of
Markovian evolution and a set of histories that is a sequence

Where pyja, ;. ....«, 1S the conditional probability for of sets of aIternatives{P';k} at a series of timed,,

given the previous history,_4, ...,x;. In terms of joint

e o k=1, ... n. The probabilities of these histories are given by
probabilities this is Eqg. (2.12, which we may conveniently write as
Pep, ..., a Po . a :Tr(Ca...a p), (23@
Pa | ...a:#- (226) " ! " '
Kk-1 L pa Ce e,
k=11 ay

that is, the sum or integral op(xy) with the functions

C. ~--a1(Xo) defined by Eq(2.12. We can now carry out
Average the conditional entropi€2.25 over past histo- thenJaynes construction

ries weighted by their probabilities and sum over all the steps
from one to n to obtain the step-by-step entropy

SudlP1 ], .. ,{Pil}): Sc({ca})=mNaXS(;)Hr[canmal}}]:Tr[canmalp] (2.3

p

for all the histories. The density function which realizes this

Sad P}, - (PG maximum has the form
:kzl ak_12-~al pak_l»--alsk({PI;kHak*l' ' 'al)' E(X):eXF{_aZa )\an”.alcan»--al(x) ' (232)
(2.27

where the Lagrange multipliers“r " “1 are determined by

. . ) the conditions
A little algebra using Eqgs(2.26) and (2.27) is enough to

show that, for the case of sets of alternatives at a series of Tr(C Z)zTr(C p). (2.33
times, the step-by-step entropy and the history space entropy n'trel e

are related by The C, ...,,(X) are not projections, and there seems no

N N easy way to evaluate Eq$2.32 and (2.33 explicitly in
Shd{cal) =Sepd{Pys I - - - {P5,}) +(N=n)log, \22 ” generr]all.I Howe\;1er‘$dC and S, supply upper bounds o8, as
. we shall now show.



6374 TODD A. BRUN AND JAMES B. HARTLE PRE 59

Write out the entropy functionaP.13 for W of the form
(2.9 to find, after a little algebra,

8(5)=S(V~V)—f dXoS(Xo)p(Xo), (2.34

where S(W) is Eq.(2.13 for W of the form(2.9), and

S(p)=—Tr(plog, p). (2.35

The entropys(xg) is defined by

S(Xp) = _f dX,- - - dXqy P(Xp- - - Xo)10Gp P(Xp- - - Xo),

(2.36
where
P(Xn, - -+ Xo)=P(Xntn|Xn_1tn-1)- - 'p(X1t1|X0to)-2
(2.37 FIG. 1. History space entrop$,s, for the discrete random walk
The functions(x,) is always positive. Thus as a function of coarse-graining scales andAt. In this system, a
particle begins ak=0 on a 1D lattice of 256 points and moves left
S(E)$S(\7V) (2.39 or right by one position with equal probability at eachMf 128

times. The entropy is measured in bits of missing information.
These results were produced by a Monte Carlo simulation with

for W of the form (2.9). [Note that the Markovian form of ;5530 random trajectories; because of the rapid ris8,imwith

the dynamics in Eq(2.37) is not important; any probability
functionp(x,, . .. Xg) satisfies this inequality On maximi-

zation overp we have the inequalities

Sics Sdcg Shs-

In particular, if on fine-graining, is driven to a low value,

(2.39

coarse-graining, thax and At axes are plotted on a logarithmic
scale.

these coarse-grainings as a functionAof and At.

A. Random walk

then Sy and S. will be as well. We shall use this in what

follows. We take an initial condition where all histories begin at

the initial pointxo=0 and assume that at each time step the
particle has an equal chance of moving rigkt{x+1) or
Il. BEHAVIOR OF HISTORY SPACE ENTROPY left (x—x—1) on a discrete spatial lattice. There are th&n 2
UNDER FINE-GRAINING fine-grained histories with equal probability ¥/2nd all

Entropies decrease under fine-graining and increase und@her histories have probability 0. We assume that the lattice
coarse-graining. That immediately follows from the Jayned'as a large finite siz& with periodic boundary conditions
construction as the discussion leading to E2j16 shows. relating its ends. The history space entropy is given by Eq.
Usually this well-known behavior is considered for varia- (2.17 where Tr@,) is the number of fine-grained histories
tions in levels of coarse-graining at a given moment of timein & coarse-grained historg,. For all histories with the
However, histories can also be fine-grairiedime. For ex- ~ coarse-graining described above this is
ample, if a set of histories is specified by one set of alterna-
tives at a series of times, and another set of histories by the
same alternatives anore times, then the second set is a
fine-graining of the first. Simple as this is, it is clear that as the number of fine-

In this section we examine explicitly the behavior of his- grained histories increases rapidly with the number of times
tory space entropy under fine-graining in three onen=N/At, and calculating entropies by summing over all the
dimensional models with simple stochastic evolutionaryfine-grained histories in each coarse-grained history rapidly
laws. They are a discrete random walk, continuous diffusionbecomes impractical. Instead, we use a Monte Carlo ap-
and Brownian motion. The random walk is the simplestproach: we generate a large sample of fine-grained histories,
model, diffusion illustrates the maodifications necessary forbin them together into coarse-grained classes, and calculate
the continuum, and Brownian motion is a simple example ofthe entropies from the resulting probability estimates. This
a non-Markovian process. In all cases we consider a finestechnique works in the continuous case as well.
grained net ofN equally spaced times so that fine-grained In Fig. 1 we plot the history space entrof of the
histories are specified iy positions &, ... Xy). We con-  random walk model as a function of thex and At. We
sider coarse-grainings in which these positions are groupedearly see that the entropy rises steeply when the coarse-
into equal intervals of sizAx at a series of times spaced by graining is increased by increasidg and more moderately
equal intervalsAt. We then study history space entropy for asAx is increased. Increasingx to V at a fixed time gives

Tr(P,) = (Ax)NVAtYNE- LAY, 3.0
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the maximal coarse-graining where the only alternatives argraining of each history. For the coarse-graining described
(1,0). Therefore, increasindx to V for any fixed value of above, with intervals of sizAx andn=t;/At times, we get

At will give the maximum possible entropy, associated with

the alternative®=1. That is, from Eq/(3.1) (the —=plog, p logy[ Tr(P,)/Tr(1)]=nlogx(AX/V). (3.9

term vanishe
& Ax/V<1, so log[Tr(P,)/Tr(1)]<0 for all but maximally

Sh*=N log, V. (3.2 coarse-grained histories.
There are Y/AX)" coarse-grained histories. Tipdog, p
IncreasingAt for fixed Ax gives a closely related limit. part of the entropy in Eq(2.17) is maximized in the case
When At is at its maximum value oN, S, is the single when all the histories have equal probabilities. In this case,
time entropy plus N—1)log, V [cf. Eq. (2.28]. The single

time entropy ranges froml log, 2 for Ax=1 to N log, V for
Ax=V. Thplj/s, fo? largeN wgzexpectS,18 to be es%zentially max% (= Pel0gz po) =nlogy(V/AX). 39
e and that behavior is also illustrated in Fig. 1.

The maximum value 08, for the particular model simu- Taking account of E¢(3.5 we see that 0 is the maximum of
lated is N'log,V, which in this case is 1024 bits. This is Shs SO that it is strictly nonpositive. This is different from
reflected on the plot. At the other extreme, the minimumusual definitions of entropy, which are logarithms of large
entropy occurs forAt=Ax=1, and isS,=128 bits. The numbers and hence always positive. However, what is im-
finest graining included in Fig. 1, ist=Ax=2, and we see portant is the change i, under coarse-graining or refine-

that S, has already risen steeply at that point. ment, not its absolute value. _ o
We can gain some insight by looking at the limiting be-

havior of S for different levels of coarse-graining. Consider
first the coarse-grained limit whetex— V. As Ax becomes

A Markovian diffusion process illustrates the case Whe”large compared ta/Dt;, it becomes highly improbable that
M is a continuous space. Take the transition probability to bgne particle will ever diffuse outside of a single cellThus,

in this limit, one history dominates with a probabilip/~1
_ vy )2 while the others are suppressquy0, and the— X plog, p
POz talxa ) \/wDAteXF{ (Xz=x2) /DAL, part of the entropy vanishes. At the same time, the term
(3.3 log,[Tr(P,)/Tr(l1)]=nlog,(Ax/V) approaches 0 as well, so
this maximal coarse-graining iR leads t0S,—0; Sys is
whereD is a diffusion constant andt=t2—t1. Assume a maximized by maximal Coarse-graining)kn
finite range sizeV, divided into cells of sizé\x, and a total Let us go now to the opposite limit, wherex<V. We

duration for the histories ofy=NAt. ChooseV>Dt, SO can now label the intervaj by the valuex; centered in that
that we need not worry about boundaries. We again assumgterval. The probability to go fromx; _, to x; is

an initial condition where the particle is initially at,.

B. Continuous diffusion

Label the intervals of the spatial coarse-graining by an AX (Xj_xj—l)z
integeri, a point lying in theith cell if iAx=x<(i +1)AX. p(X,—|xj,1)= \/_exp{ - DAL } (3.7
The probability of a particle initially ax, passing through a mDAt
sequence of cellsiy, ... ,i, at timest;=jAt is The plog, p term for a single history is then
[P
p(is ) —p(Xg, ... X)logo p(Xq, « .. Xp)
(i+1)Ax (in+1)Ax
:f ! dx, - f dx, o nI Ax? » (Xj—Xj—-1)?
i1AX inAx =73 (o]0} DAt P(Xq,y -+« X))t j DAl
n
. . Ax2 \" (Xi—Xi_1)?
xIT poxj jAtlx;1,(j—1)A1) _ KTX-)7
L P j X\ —5at) € ; SAr | (3.9
:;J(iﬁmxdx ,“J'(i”H)AXdX Summing over all histories is the same as summing the
(wDAt)™2J)i ax inAx " above expression over all thg. These sums can be ap-
N ) proximated by integrals, which are readily evaluated to yield
(Xj=Xj-1) }
xexp{ B e i (3.4) /7Dt
= DAt 7w N
= > (—palog, pa)%nlogz(T> —5(logzn—1).

The history space entropy for the continuous case has exactly (3.9
the same form as E@2.17), the discrete case, but it is con-

venient to make use of a dimensionally invariant form of theAdding the expression for lggr(P,)/Tr(l) from Eq. (3.5
entropy, by subtracting a dimensional factor Jo). Thus,  gives for the entropy

the logTr(P,) term in Eq. (2.17 becomes
log,[Tr(P,)/Tr(1)]. Rather than being an integer, as in the
discrete case, it is a continuous measure of the coarse-

VD
Shsmnlogz( WV tf)—g(logzn—1)<0, (3.10
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thus, all other measures of entropy for histories that we have
consideregwill be minimized by the most fine-grained de-
scription. We performed a numerical calculation to generate
the entropy plot in Fig. 2. Note that the qualitative behavior
is exactly the same as in Fig. 1.

L
-1000
-1500
-2000
-2500
-3000
3500
4000

C. Brownian motion

In the previous examples, we assumed an explicitly Mar-
kovian time evolution. If we relax that assumption and sup-
pose that the probability of a histop(x, . .. X,) does not
have the formp(x,|Xn_1) - - - P(X2|X1) p(X1), are our conclu-
sions affected?

10 As a simple example of a non-Markovian process, con-
sider a particle undergoing Brownian motion. In addition to
inertia and dissipation, the particle is subjected to a stochas-
tic force. We can write a stochastic differential equation for
its motion in Ifoform:

Ax 10
dx=(p/m)dt,
FIG. 2. History space entrop$,s, for continuous diffusion as a (3.13
function of coarse-graining scalés< and At, in bits. All particles dp=—2T'pdt+adé

begin atx=0 on a 1D manifold of lengtlv=20, and spread with

diffusion constanD =1 through a finest-grained net &f=1024 . L . . .
times with minimal time stepy=0.01. The finest-grained cell size Whered¢ is a stochastic differential variable with zero mean

is Ax=0.1. We have subtracted off the maximum entroplpg, v~ and variancet,
to render our results invariant under dimensional rescaling and re-

finements in time; the maximum entropy is thus 0, &gdis not M(dé)=0, M(dé&?)=dt. (3.19
bounded below. These results were produced by a Monte Carlo
simulation with 10 000 random trajectories. This stochastic equation corresponds to a Fokker-Planck

, , i ... _equation for probability densitieg(x,p,t) in phase space
i.e., Sys approaches a constant negative value in the limit of[13]:

small Ax for a fixed At.

Suppose now that we holtix fixed and vary the coarse- J J 2 2
graining int. If we go to the maximum coarse-grainidg ~ —~ X,p)= —(B)—p(x,p)+21“—pp(x,p)+——g(x,p).
=t;, we return to the case of alternatives at a single time. ifdt m/ dx p 2 dp
the probability of the particle being in the intervas p; , the 319

entropy is just ) o
We can enumerate a set of coarse-grained histories for

Brownian motion just as we did for the continuous random
Sh= —Zi p; log, p; + 10g,(AX/V), (31D walk, dividing up the range/ into cells of sizeAx and di-
viding the total time of the historiet into n steps ofAt
differing from the usual single-time entropy only by a con- €ach. An individual coarse-grained history consists of all
stant. fine-grained histories which pass through a given set of in-
If instead we refine the description in time, the result istervalsiy, ... i, at timest;=jAt. _
quite different. As the time stept becomes small compared ~ Histories ofx(t) are not Markovian because of the exis-
to Ax?/D, the probability of a particle moving from one tence of the inertia term- (p/m)dp/dx in Eq. (3.15. How-
interval to another in a time step becomes small as welleVver, looked at over relatively long timéd¢>1/T" the inertia
Beyond that point, refining the description of the system inPecomes unimportant, as dissipation dominates. On these

time does not increase the actual number of alternative higong time scales, the system is well approximated by the
tories with nonzero probab“ities_ Thus, continuous diffusion mode{33) with D=a?/8I'>’m?. On

very short time scales, by contrast, inertia dominates. The
particle drifts at a near-constant velocity, only slightly de-
— 2> plog, p—const. (312 flected by dissipation and noise.
We see that the same arguments we used in the case of
The log[Tr(P,)/Tr(1)]=nlog,(Ax/V) term, however, does continuous diffusion apply to this case with little modifica-
change as we increaseBecause this term is negative, as we tion. Fine-graining int reduces the entropy without limit.
increase the ﬁne-graining in the history space entrorjshs Fine-graining inx is a little less clear, but a similar argument
decreases without limit. can be made. In the limit of fine-grainegdwe can approxi-
In both x andt, the entropy is diminished by making the mate the probability of a history as

description more fine-grained. Thus, we expect the same be-
havior as in the simple random walk: the entrofy (and P(X1, « . X)) =(AXIQ)"f(Xq, ... Xy, (3.16
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symmetric about,. However, it is not just this statistical
tendency to approach equilibrium that is usually meant by
the second law of thermodynamics. Rather, it is the general
increase in entropy of suitable coarse-grained descriptions of
the Universe since the big bang. In particular, what is meant
is that, for the most part, certain entropies of presently iso-
lated systems are increasing in the same direction of time.
The time-asymmetric increase of these entropies of the Uni-
verse arises from a cosmological initial condition at which
those entropies were low. As Boltzmann put it, “The second
law of thermodynamics can be proved from the mechanical
theory if one assumes that the present state of the universe
. started to evolve from an improbable sta{g4].

10 The entropies that are most useful in chemistry and phys-
ics are associated with quasiclassical coarse-grainings which
fix the values of averages over suitable volumes of densities
of approximately conserved quantities such as energy, mo-
mentum, and abundances of chemical and nuclear species.

10 Their utility arises from the approximate conservation. The

small volumes over which the averages are taken reach local

equilibrium on short time scales, leaving the approach to
equilibrium between volumes to be described by phenom-
enological equations such as the Navier-Stokes equation over

finest-grained net of times and minimum cell size are as in Fig. z!ong(a_r tlm? Scale_s. The smgle-tl_me entropy_ of these coarse-
and the same conventions are used here in displaSigg These grainings is low in the early universe leading to a general

results were produced by a Monte Carlo simulation with 10 000tendency to increase. .
random trajectories. Statements of the second law often refer to the increase of

“the” entropy as though there were only one possible
wheref(x,, ... x,) is dimensionless an@, is a constant coarse-grained description for which it holds. What is meant
with units of length, which depends aiit but notAx. We by “the” entropy is usually the single-time entropy of the

can replace the sum over all histories in E8.17) with n alternatives defining the quasiclassical realm of everyday ex-
integrals over the;, and get perience described above. However, we should expect the

general increase of the entropy afiy set of coarse-grained
alternatives which is low in the initial moments of the uni-
Shs=— @f dxg- - dxn f(Xq, .. Xp)loga f(Xq, ... Xp) verse. To give just one example, the single-time entropy of a
0 set of quasiclassical alternativg¢®,} increases with time
—nlog,(Ax/Qg) +nlogy(Ax/V)=Sy+nlog,(Qq/V), when conditioned on various other quasiclassical alternatives
(3.17) {Pg}. Indeed, such entropies

where Sy has noAx dependence. Since thex dependence S({PahtB:t") 4.0

has dropped out completely, we see that in this case as Welke the ones of practical interest. The entropy of a gas inside
the entropy approaches a constant as we fine-gram in - 5 piston is the entropy of alternatives referring to the gas
In Fig. 3 we show the numerical results for the entropy Ofgiyenthe configuration of the piston. There are thus a variety

coarse-grained histories of the Brownian motion model as @t coarse-grainings and conditions for which the missing in-
function of coarse-graining ix andt. This graph clearly formation increases with time.

shows essentially the same behavior §f with coarse-
graining as in Figs. 1 and 2.

L
-1000
1500
-2000
-2500
-3000
3500
4000

Ax

FIG. 3. History space entropys, for Brownian motion as a
function of coarse-graining scalés< and At, in bits. All particles
begin with (x,p)=(0,0) on a 1D manifold of lengtlv=20, with
dissipation 2’=1, noise strengtra=1, and massm=1. The

B. The increase in history entropies

IV. THE SECOND LAW FOR HISTORIES Sets of alternative, coarse-grained histories provide more
_ _ general coarse-grained descriptions of the Universe than sets
A. The increase of entropies of coarse-grained alternatives at merely one time. The corre-

The familiar second law of thermodynamics concerns thesPonding entropies of histories should also increase with
behavior of the entropy of a fixed set of coarse-grained altime if they are low at the time of the system’s initial con-
ternatives at a moment of time as this time is varied. wedition. For example, consider a set of histories consisting of

shall call such entropies “single-time entropies.” a series of alternativePy, }, ... {P; } at a sequence of
If the value of a single-time entropy at some particulartime t,, ... t, giving a histories entropy

time ty is all that is known about a system, and if that value

is much lower than the maximurtequilibrium) value, then Sud{P} Jitni -+ - i{Pa i to). (4.2

that entropy will subsequently tend to increase for most dy-
namical laws of interest. If the dynamical law is time sym- If S,4is initially low, and these times are all translated for-
metric about, then the approach to equilibrium will also be ward by an amounT, we would expect
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Sod{P? Lt +T; .. {PL Lt +T) 4.3 _ R _ -
" ! p(n; ,tj|n0,t0)=(—1)12*212R (|/R)lc'njc§+|”°, (4.6)
to increase withr.

.. I . . .
A proof of the second law even for single entropies existavhere the coefficient€, are defined by the identity

only for highly idealized situation{See, e.g.[15].) That is IR
partly because entropy does not monotonically increase but 1—7)R1(1+7)R+!= Cl Ak 4
fluctuates about an increasing trend. We can therefore hardly (1= (1+2) kZO ke @.7

expect a mathematical proof of the increase of @) with o _
T. However, the connection & with the step-by-step en- All the rest of the probabilities we shall need are easily con-

tropy supports this in the following way. structed from Eqs(4.5) and(4.6). .
Consider histories consisting of alternatives at just two Consider, by way of example, the history space entropy
timest, andt,. Then from Eqs(2.27 and(2.29, for the set of histories specified by giving the number of balls

in A at two timest; andt; , ,, assuming an initial condition in
which ny balls are inA att,. We call these “two-time his-

S (P2 1tz {PL t) =2 p(an)S({PE ) tal an ta) tories” for short. From Eq(2.17) this is
a

+S({P} },ts) +const, (4.4 Shd {Nj+m N}

= _n_E N P(Nj+m.N;j[No)l0g, P(Nj 4 m,N;jINo)
where the constant is independentteft, and the alterna- Jrme
tives. Ast, increases, the second term in E4.4) increases. 2R (2R
That is just the usual second law. The first term can also be +n.z n. P(N;.+m.Nj[No)l0g, Nitm \ N
expected to increase as bdthandt, move away from a low el J l

_ 2R
entropy initial condition, provide®;, is sufficiently coarse- +(N=2)logy(2°7). (4.9

grained that the initial condition plays an important role in The probabilityp(nj+m,nj|n0) is obtained by multiplying
determining future probabilities. Eq. (4.6) by a factor of Eq.(4.9) for each of them times
The sequence of times necessary to specify a set of histgetweert; andt; . ,, and summing over the intermediate val-
ries presents a variety of possibilities for investigating theyes ofn,, j<k<m. There are 2} ways of arranging the
change in entropy. We have already discussed a uniformalls among the urns at each time so that a binomial coeffi-

translation of all the times. However, we could also discusgient gives the number of arrangements of balls in which
increasing the separation between the times. For example, #re in urnA. Thus,

the two-time case of Ed4.4), S, increases af is fixed and
t,—t; increases. Indeed, that is just a special case of the R 2R
usual second layicf. Eq. (4.1)]. Tr(l)=2°%, Tr(P,)= . (4.9
It takes of order R time steps to share information
) . ) . among the R balls, and that is the order of characteristic
An exactly soluble model which nicely illustrates the in- yg|axation time for entropies to increase to their maximum
crease in history space entropy is the urn model of Ehrenfesty) e [17]. This is the case for the entropies of two-time
and Ehrenfesf16]. The model concernsRnumbered balls, histories ag, andt, are increased keeping their difference
each of which is in one Qf two urng\ or B. The system  constant; this was suggested by E44) and shown by Fig.
evolves througiN discrete time steps. At each time a numberg  The relation(4.4) shows that the maximum valu@ot
from 1 to 2R is chosen and that ball is moved from its jncjuding the neglected timgss roughly twice the maximum
present urn to the othgr._ Fine-grained histories are speuﬁe&mopy for single time coarse-grainings of this type.
by giving the urn containing each ball at each of khémes. This relation also indicates th&, should grow with the
A simple kind of coarse-grained history specifies the numbegame characteristic relaxation time gs-t, is increased,
of balls in one urn, say, at one timet. The kind of multi-  yeepingt, fixed. The increase comes from the first term in
time, coarse-grained histories we shall study are specified bgq. (4.4). Again, the maximum value reached lies between
giving the number of balls i, (ny, ....n,) atasequence gne and two times the maximum for single-time coarse-
of the N timest,, ... t,. _ ~grainings by the number of balls in one urn. This behavior is
The probabilities relevant for constructing the entropies;isg evident in Fig. 4though for larget, the increase is
can be worked ouf16,17. The probability of a transition 5imost saturated at the initial tie
from one time to the next is Increasing the number of times included in each history is
a fine-graining. At a given value df;, the entropy should
decrease as more times are included. This behavior is illus-
trated in Fig. 5 for R=ny=30. This shows the behavior of
(4.5 one-, two-, and three-time history space entropies as a func-
tion of t,, wheret,=t;+1 andtz=t;+2. All the entropies
Given that the number of balls in urkis ng at timetg, the  increase to maximum values on roughly the time sdale
probability thatA will contain n; balls at timet; is Asymptotically from Eq.(4.4), the entropies behave like

C. The urn model

— J J
p(nj+lltj+l|nj Yt])_ 2R 5nj+1,nj+l+ 2R5nj+1,njfl-
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FIG. 4. History sp
Ehrenfest urn model as a function gf andm=t,—t4, in bits. In
the case shown there ar&R2 30 numbered balls distributed be- The result is that the maximum is given by
W= ,
2 PaTp]

tween urnsA and B, with all the balls initially in urnA. In Figs. 4
and 5 we have set the total number of fine-grained times arbitrarily
at N=3; a larger, more realistic number would merely add a con-

stant displacement 6.

whereS; is th

the values of the time differences.

t, for the urn model but depends on the number of times and
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V. QUANTUM HISTORY SPACE ENTROPY
Isham and Linden posited their family of entropi@s23
on the basis of the property that they decrease under fine-
graining. We were able to show that the classical analogs

could be derived from a Jaynes construction for the case
=1. In this section we show that quantum history space

entropy can be similarly derived as a preliminary to a more
general discussion of its connection with other entropies

[29].

Consider a set of decoherent alternative histofies,
each history with a probabilitp,, and represented in history
space by a projectoP,. Define an entropy functional on

history space operatoi4 by
S(W)=—Tr(W log, W). (5.1

Then maximizeS(W) over allW for which Eq.(5.) is real,
(5.2

subject to the condition that
Tr(P,W)=p,.

P
(5.3

o

ace entrop$,s, for two time histories of the

and the entropy is

(4.10
Sns({ca})=—§ Palog Pat 2 Pulog Tr(P,), (5.4

Si(ty) —c,

e single-time entropy andis independent of
analogous to Eq(2.17).

x=1 history space entropy decreases on fine-graining. There
are more conditions constraining the maximum in Eg14)
in a fine-graining of a set than in the set itself. The maximum

The Jaynes construction immediately makes clear why the
can therefore only be lower. For other valuesxdf is suf-

90

80
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60

40 -

30

ficient to note that
L({Cah)=Snd{Cal) — Tr()+(x—1)>, p,log[Tr(P,)].
(5.5

This too decreases with fine-graining, as follows from the
result forl; and the convexity of the logarithm.

Thus, history space entropy can be given a unified con-
struction through a Jaynes procedure both classically and
guantum mechanically. What can be done classicallynoiit
Oreiime — quantum mechanically is to express the probabilitiesaior

decoherent histories in the form
p,=Tr(P,W) (5.6

Two times ----
Three times

for one positive operatdWV, independent of the set of alter-
natives. There is no quantum-mechanical analog of £§).

15

1
30

25

Were there one, quantum mechanics would be equivalent to

20
FIG. 5. History space entrop$,., for one, two, and three time @ classical stochastic theory. it possible to find history

10
t
histories of the Ehrenfest urn model versus the first specified timeSpace operator®V which reproduce the probabilitiep,,
as

10
5
1
t,, in bits. The times of the two and three time histories are sepathrough Eq.(5.6) for any decoherent set. For example, valid
rated by single time steps. The parameters and initial conditions ar@xpressions for the probabilities of decoherent histories, such

the same as in Fig. 4.
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properties analogous to the usual second law of thermody-
namics. In particular, the entropy of a set of histories should
increase as that set is translated forward in time away from a
low entropy initial condition. We illustrated this with the

Pa=Tr(P} (tn)---Pq (t1)p) (5.7

can be transcribed into history space using the idehtig}

Try(Ar - A)=Trgk[(A1®---®A,),S], (5.9 classical urn model, but expect it to hold for more realistic
dynamical laws, both classically and quantum mechanically.
where General sets of alternative coarse-grained histories will
not exhibit deterministic correlations in time in a classical

Slv)@- - ®lu=lvY®[v)®---®[v)_1). (5.9

stochastic theory. However, sufficiently coarse-grained sets
However, the resultinV’s are not positive, even when they of historiesmayexhibit deterministic behavior. For example,
can be arranged to be Hermitean. For this reason, evéfi€ unpredictable motion of single atoms yields nearly deter-
though quantum analogs &({c.}) andS.({c,}) can be ministic laws for the hydrodynamic variables of pressure,
defined, the derivations of the inequalities relating them tg®mperature, and density. Characterizing the level of deter-

S.dic.)) like Eqg. (2.39 do not immediately generalize to minism is an interesting question related to the search for
quantﬁm mechanics. measures of classicality in quantum theory. It is clear from

our discussion that no entropy of histories is a measure of
determinism. Entropy is reduced by fine-graining, and the
finest-grained histories are not deterministic. In quantum
Information is contained not only in sets of alternatives attheory, therefore, we cannot expect an entropy of histories,
a single moment of time, but more generally in sets of alterby itself, to be a measure of classicality.
native histories — sequences of sets of alternatives at a series
of times. A variety of measures of the information in histo-
ries are available. In this paper we have provided a unified
construction of all of these through the Jaynes procedure. It We would like to thank Carl Caves and Murray Gell-
follows from these constructions that these entropies deMann for useful discussions. The work of T. Brun was sup-
crease under fine-graining and increase under coars@orted in part by NSF Grant No. PHY94-07194, and the
graining. We illustrated this in a few simple models. work of J. B. Hartle was supported by NSF Grant Nos.
We expect entropies for histories to share other commoRPHY95-07065 and PHY94-07194.

VI. CONCLUSIONS
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