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Entropy of classical histories
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We consider a number of proposals for the entropy of sets of classical coarse-grained histories based on the
procedures of Jaynes, and we prove a series of inequalities relating these measures. We then examine these as
a function of the coarse-graining for various classical systems, and show explicitly that the entropy is mini-
mized by the finest-grained description of a set of histories. We propose an extension of the second law of
thermodynamics to the entropy of histories. We briefly discuss the implications for decoherent or consistent
history formulations of quantum mechanics.@S1063-651X~99!02606-9#
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I. INTRODUCTION

Entropies are measures of the information missing from
coarse-grained description of a system. Different coa
grained descriptions give rise to different entropies. If
entropy is low at one time, it will have a general tendency
grow as its coarse-graining is translated forward in tim
That is the second law of thermodynamics.

Usually, entropy is constructed from a coarse-grained
scription at a single moment in time. For example, if all th
is known of the state of a system at a particular time is
total energy, the missing information is the entropy of t
microcanonical ensemble — a quantity which is independen
of time. If all that is known at a time are the expected valu
of the energy, number, and momentum densities, avera
over volumes large enough to be in local equilibrium, th
the missing information per volume is the time-depend
entropy density of hydrodynamics.

The Jaynes procedure@1,2# gives a general method fo
constructing the entropy of a system at a moment of time.
illustrate, letM be the phase space of a classical system
r(x), xPM be the probability distribution representing th
state of the system. SupposeA(x) is a classical quantity
whose expected valuêA& is known, where

^A&5E
M

dx A~x!r~x!. ~1.1!

The missing informationS is constructed by maximizing th
entropy functional

S~ r̃ !52E
M

dx r̃~x!log2@ r̃~x!# ~1.2!

over all r̃(x) that imply the same expected value. In sym
bols,

a!Present address: Department of Physics, Carnegie Mellon
versity, Pittsburgh, PA 15213-3890.
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S5max
r̃

S~ r̃ !u^A&r̃5^A&r
. ~1.3!

However, entropy need not only apply to coarse-grain
alternatives at one moment in time. More generally, one
consider the missing information of a sequence of alter
tives at a succession of times. These are the entropie
coarse-grainedhistoriesof the system. A variety of such en
tropies have been described~e.g.,@3–5#! and applied to mea-
sures of coarse-graining@4#, classicality @6#, and effective
complexity@7#. In theories which possess a notion of histo
but lack a fixed notion of time~such as certain formulation
of quantum gravity@8#! the missing information of histories
may be the only notion of entropy available.

In this paper we examine the entropy of histories for cl
sical stochastic systems — classical systems with a prob
listic law of evolution~including deterministic evolution as
special case!. We use Isham’s history space@10,11# and a
generalization of the Jaynes procedure to give a unified v
of several different kinds of entropies for histories and d
scribe relations among them. We illustrate with numeri
calculations in some simple examples. Finally, we describ
modest generalization of the second law of thermodynam
applicable to the entropy of histories and test it in a sim
model. Our considerations are almost entirely classical,
in Sec. V we point the way to generalizations for th
quantum-mechanical case.

II. ENTROPIES OF HISTORIES

A. Histories and history space

We consider classical theories with~most generally! a sto-
chastic evolution law in a spaceM through a finest-grained
net of N times separated by equal intervalsh. For this dis-
cussion the spaceM could be a configuration space of pa
ticle positions, a spatial lattice, or a phase space. We de
a point inM by x.

The cases whenM is a discrete space or a continuo
manifold differ only formally, and can to a large extent b
treated together by using a common notation. We define
i-
6370 ©1999 The American Physical Society
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PRE 59 6371ENTROPY OF CLASSICAL HISTORIES
Tr f ~x!5 (
xPM

f ~x! ~2.1a!

whenM is discrete, and

Tr f ~x!5E
M

dx f~x! ~2.1b!

when M is continuous. This notation is suggestive for t
quantum-mechanical case to be treated later. We also d

V[Tr~ I !, ~2.1c!

whereI is the unit function onM. V is an integer whenM is
discrete and a real number whenM is continuous.

A fine-grained history is described by a sequence
xA , A51, . . . ,N for each of the finest-grained net of time
Histories are therefore naturally thought of as living in
classical ‘‘history space’’M5M3•••3M , with one factor
for each fine-grained time. A point inM is denoted byx, and
corresponds to a fine-grained history. This is the class
analog of the ‘‘history space’’ introduced by Isham, and us
so effectively in quantum theory by Isham and Lind
@11,5#, and Isham, Linden, and Schreckenberg@12#.

A coarse-grained set of alternative histories is a partit
of the setM of fine-grained histories into an exhaustive s
of mutually exclusive regions or classesca. ~The notion of
coarse-graining has many specific applications in phys
See@9# for a convenient reference to some of these.! Each
class is a singlecoarse-grained history. We can usefully in-
troduce projections onto these regions ofM ,

Pa~x!5H 1 xPca

0 x¹ca .
~2.2!

A sequence of coarse-grained alternatives at a serie
times t1 , . . . ,tn is an example of a coarse-grained histo
Suppose the alternatives at timetk are whetherx is in one of
a set of regions ofM, $Dak

k %, ak51,2, . . . , with volumes

Vak

k . We introduce projections on these regions ofM,

Pak

k ~x!5H 1, xPDak

k

0, x¹Dak

k ,
~2.3!

which satisfy

Pak

k ~x!Pa
k8

k
~x!5daka

k8
Pak

k ~x! ~2.4!

and

Tr~Pak

k !5Vak

k . ~2.5!

In this case, a coarse-grained history is a particular sequ
of regionsa[(an , . . . ,a1) and corresponds to a projectio
on M of the form

Pa5I 3•••3Pan

n 3I 3•••3Pa1

1 3•••3I . ~2.6!
ne
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That is,Pa is the projection onM with projectionsPak

k in-

serted at the timestk andI ’s at all other times. In the discret
case, the most general projectionPa can always be written as
a sum of such chains:

Pa~x!5 (
a1•••anPa

Pan•••a1
~x!, ~2.7!

which allows the construction of anarrative for each coarse-
grained history. For histories of the form~2.6! it would read
‘‘the system was inDa1

1 at t1, thenDa2

2 at t2 , . . . .’’ In the

continuum case there is a corresponding integral.
We assume that there is a probability law for the fin

grained histories, that is, a probability functionW(x) on M .
W(x) satisfies

W~x!>0 and Tr~W!51. ~2.8!

Of course,W(x) may have special forms in particular ci
cumstances. For example, for a Markov process

W~x!5ph~xNuxN21!ph~xN21uxN22!•••ph~x2ux1!r~x0!,
~2.9!

wherer(x0) is the distribution at the initial time andph(xuy)
is the transition probability to arrive atx in a timeh having
started fromy. If M were a classical phase space, determ
istic evolution would be represented by Eq.~2.9! with

ph~xuy!5d@x2xh~y!#, ~2.10!

wherexh(y) is the phase-space pointy evolved by the time
h.

The probability of a coarse-grained history is

pa5Tr~PaW!. ~2.11!

For example, in the case of a sequence of alternatives
Eq. ~2.3! at a series of times, and a Markovian probability
the form ~2.9!,

pan•••a1
5E dxn•••E dx1Pan

n ~xn!

3p~xntnuxn21tn21!Pan21

n21 ~xn21!•••

3Pa1

1 ~x1!p~x1t1ux0t0!r~x0!

[E dx0Can•••a1
~x0!r~x0!. ~2.12!

Herep(x8t8uxt) is the composition of all theph’s from t to
t8, t0 is the initial time, andCan•••a1

(x0) is defined to be

the probability of a coarse-grained historya1•••an given
that the system is initially atx0.

B. The entropy of histories

The Jaynes construction may now be applied in hist
space to give an entropy for histories. We introduce the
tropy functional@18#

S~W!52Tr~W log2 W!. ~2.13!
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The history space entropy Shs($ca%) of a set of coarse-
grained alternative histories is then

Shs~$ca%![max
W̃

S~W̃!uTr(PaW̃)5Tr(PaW) . ~2.14!

In words,Shs maximizes the missing informationS over all
probability distributionsW̃ on M that reproduce the prob
abilities of the coarse-grained histories$ca% following from
W.

The important property ofShs($ca%) is that it increases on
coarse-graining. Specifically, suppose$c̄ā% is a coarse-
graining of the set$ca%. That means that$c̄ā% is a partition
of the $ca% into larger classes, and

c̄ā5 ø
aPā

ca . ~2.15!

Then, as with any Jaynes-type construction,

Shs~$ca%!<Shs~$c̄ā% !. ~2.16!

The proof is immediate from Eq.~2.14!. The constraints for

$ca% contain those for$c̄ā% but there are more of them. Th
maximum therefore can only be less.

Since thePa(x) are mutually exclusive projections, a
expression forShs can be derived by carrying out the max
mization using Lagrange multipliers to enforce the co
straints. The result is

Shs~$ca%!52(
a

pa log2 pa1(
a

pa log2 Tr~Pa!.

~2.17!

The maximum value ofShs occurs for the coarsest-graine
set of histories where the only history with nonzero proba
ity is I 3•••3I . The maximum is

Shs
max5N log2 V. ~2.18!

The minimum~which occurs for completely fine-grained hi
tories! is zero.

Another useful quantity is the Lloyd-Pagels~LP! depth
@3#, defined as

DLP~$ca%![Shs
max2Shs~$ca%!

5(
a

pa log2 pa2(
a

pa log2@Tr~Pa!/Tr~ I !#.

~2.19!

This has a number of useful features. It is a direct measur
the information in a set of histories, it is invariant und
dimensional transformations, and it is invariant under refi
ment of the fine-grained net of times.

To illustrate, consider the entropy of a history consisti
of a set of alternatives$Pa% at a single moment of timet.
This is

Shs~$Pa%!52(
a

pa log2 pa1(
a

pa log2@Tr~Pa!#

1~N21!log2 V. ~2.20!
-

-

of

-

This is the entropy that would be obtained from the us
Jaynes construction~1.3! with the addition of the constan
(N21)log2 V representing the missing information at all th
other moments of time. By contrast, the depth

DLP~$Pa%!5(
a

pa log2 pa2(
a

pa log2@Tr~Pa!/Tr~ I !#

~2.21!

is the same as the2S that would be calculated from Eq
~1.3!, without extra terms. Note that if we use a dimensio
ally invariant form Shs, by subtracting a term log2 VN as
suggested above, we would have the simple relationship

Shs~$ca%!2 log2 VN52DLP~$ca%!. ~2.22!

C. Other entropies of histories

The history space entropy is not the only informati
measure that can be associated with histories. In the foll
ing we discuss some others and the relationships betw
them.

1. Isham and Linden’s entropies

In their seminal paper on entropy in generalized quant
theory@5#, Isham and Linden utilize history space to define
one-parameter family of entropies based on the decoher
functional D(a,a8) for a decoherent set of coarse-grain
histories. Translated into the notation of this paper, th
definition reads

I x~$ca%!52(
a

pa log2 pa1x(
a

pa log2@Tr~Pa!/Tr~ I !#.

~2.23!

As they show explicitly, forx>1 the entropyI x($ca%) pos-
sesses the important property that it increases under co
graining of the decoherent set.

As discussed by Isham and Linden, in the case of non
ativistic quantum mechanics, history space is a repeated
sor product of the Hilbert space of the system — one fac
for each time. ThePa are projections on this space and t
trace is defined as usual. However, their arguments can
immediately applied to the classical situations we have b
discussing.~We shall return to the quantum-mechanical ca
in Sec. V.! Indeed, any classical problem can be conside
as a generalized quantum theory in which all sets of alter
tive histories decohere automatically: D(a,a8)
[p(a)daa8 . The expression~2.23! thus applies immedi-
ately in the classical case. The history space entropyShs we
arrived at from the Jaynes construction corresponds tx
51, up to a possible overall renormalization. Isham and L
den mainly considerx52, but that should not obscure th
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PRE 59 6373ENTROPY OF CLASSICAL HISTORIES
fact that our history space entropy, defined through a Jay
construction, is a special case of those that they conside
Sec. V we will provide a Jaynes construction for this entro
in quantum mechanics.

2. Step-by-step entropy

Consider the special case where the set of coarse-gra
histories consists of a sequence of sets of coarse-graine
ternatives at a series of timest1 , . . . ,tn . For generality we
assume that these sets are branch dependent, that is, th
at time tk may depend on the specific choice of sets at p
vious timest1•••tk21. The projections at timetk then have
the form

Pak

k ~ak21 , . . . ,a1!. ~2.24!

At any stage in the sequencek51, . . . ,n, one can construc
the Jaynes entropy of the set of alternatives$Pak

k % condi-

tioned on a particular previous historyak21 , . . . ,a1. This
is, following Eq. ~2.20!,

Sk~$Pak

k %uak21 , . . . ,a1!

52(
ak

pakuak21 , . . . ,a1
log2 pakuak21 , . . . ,a1

1(
ak

pakuak21 , . . . ,a1
log2$Tr@Pak

k ~ak21 , . . . ,a1!#%,

~2.25!

where pakuak21 , . . . ,a1
is the conditional probability forak

given the previous historyak21 , . . . ,a1. In terms of joint
probabilities this is

pakuak21 , . . . ,a1
5

pak , . . . ,a1

pak21 , . . . ,a1

. ~2.26!

Average the conditional entropies~2.25! over past histo-
ries weighted by their probabilities and sum over all the st
from one to n to obtain the step-by-step entrop
Ssbs($Pan

n %, . . . ,$Pa1

1 %):

Ssbs~$Pan

n %, . . . ,$Pa1

1 %!

5 (
k51

n

(
ak21•••a1

pak21•••a1
Sk~$Pak

k %uak21•••a1!.

~2.27!

A little algebra using Eqs.~2.26! and ~2.27! is enough to
show that, for the case of sets of alternatives at a serie
times, the step-by-step entropy and the history space ent
are related by

Shs~$ca%!5Ssbs~$Pan

n %, . . . ,$Pa1

1 %!1~N2n!log2 V.

~2.28!
es
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That is, they are identical except for a constant factor tha
the missing information at the times not specified. Eviden
Ssbs,Shs for the coarse-grained sets for which they are b
defined.

D. Dynamically constrained history space entropy

In constructing of the history space entropyShs, the en-
tropy functional ~2.13! is maximized over all probability
functionsW̃(x) irrespective of whether they conform to th
same basic dynamical law.Shs is thus the missing informa
tion in histories assuming we are also missing any inform
tion about the dynamics.

A dynamical law could be enforced by maximizingS(W̃)
only over theW̃ that conform to it. For example, by max
mizing over the form~2.9!, keepingph(xuy) fixed, we en-
force a particular Markovian dynamical law. The resultin
entropySdc($ca%) we call thedynamically constrained his
tory space entropy. The maximum in Eq.~2.14! is carried out
only over the initial distributionr̃(x) with W̃(x) determined
by enforcing the subsequent dynamics explicitly. Eviden
since this is a constrained maximum,

Sdc~$ca%!<Shs~$ca%!. ~2.29!

The entropySdc($ca%) is connected to another entropy o
histories obtained by applying the Jaynes method used in
~1.3! to the initial r̃(x), but constraining the maximum no
simply by the requirement that probabilities at one time
reproduced, but probabilities of a whole set of histories. W
call this theinitial condition entropy Sic($ca%).

We can illustrate the construction ofSic in the case of
Markovian evolution and a set of histories that is a seque
of sets of alternatives$Pak

k % at a series of timestk ,

k51, . . . ,n. The probabilities of these histories are given
Eq. ~2.12!, which we may conveniently write as

pan•••a1
5Tr~Can•••a1

r!, ~2.30!

that is, the sum or integral ofr(x0) with the functions
Can•••a1

(x0) defined by Eq.~2.12!. We can now carry out
the Jaynes construction

Sic~$ca%!5max
r̃

S~ r̃ !uTr[Can•••a1
r̃] 5Tr[Can•••a1

r] ~2.31!

for all the histories. The density function which realizes th
maximum has the form

r̃~x!5expF2 (
an•••a1

lan•••a1Can•••a1
~x!G , ~2.32!

where the Lagrange multiplierslan•••a1 are determined by
the conditions

Tr~Can•••a1
r̃ !5Tr~Can•••a1

r!. ~2.33!

The Can•••a1
(x) are not projections, and there seems

easy way to evaluate Eqs.~2.32! and ~2.33! explicitly in
general. However,Sdc andShs supply upper bounds onSic as
we shall now show.
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Write out the entropy functional~2.13! for W̃ of the form
~2.9! to find, after a little algebra,

S~ r̃ !5S~W̃!2E dx0s~x0!r̃~x0!, ~2.34!

whereS(W̃) is Eq. ~2.13! for W of the form ~2.9!, and

S~ r̃ !52Tr~ r̃ log2 r̃ !. ~2.35!

The entropys(x0) is defined by

s~x0!52E dxn•••dx1 p~xn•••x0!log2 p~xn•••x0!,

~2.36!

where

p~xn , . . . ,x0!5p~xntnuxn21tn21!•••p~x1t1ux0t0!.
~2.37!

The functions(x0) is always positive. Thus

S~ r̃ !<S~W̃! ~2.38!

for W̃ of the form ~2.9!. @Note that the Markovian form o
the dynamics in Eq.~2.37! is not important; any probability
functionp(xn , . . . ,x0) satisfies this inequality.# On maximi-
zation overr̃ we have the inequalities

Sic<Sdc<Shs. ~2.39!

In particular, if on fine-grainingShs is driven to a low value,
then Sdc and Sic will be as well. We shall use this in wha
follows.

III. BEHAVIOR OF HISTORY SPACE ENTROPY
UNDER FINE-GRAINING

Entropies decrease under fine-graining and increase u
coarse-graining. That immediately follows from the Jayn
construction as the discussion leading to Eq.~2.16! shows.
Usually this well-known behavior is considered for vari
tions in levels of coarse-graining at a given moment of tim
However, histories can also be fine-grainedin time. For ex-
ample, if a set of histories is specified by one set of alter
tives at a series of times, and another set of histories by
same alternatives atmore times, then the second set is
fine-graining of the first.

In this section we examine explicitly the behavior of h
tory space entropy under fine-graining in three on
dimensional models with simple stochastic evolutiona
laws. They are a discrete random walk, continuous diffusi
and Brownian motion. The random walk is the simple
model, diffusion illustrates the modifications necessary
the continuum, and Brownian motion is a simple example
a non-Markovian process. In all cases we consider a fin
grained net ofN equally spaced times so that fine-grain
histories are specified byN positions (x1 , . . . ,xN). We con-
sider coarse-grainings in which these positions are grou
into equal intervals of sizeDx at a series of times spaced b
equal intervalsDt. We then study history space entropy f
er
s

.

-
he

-
y
,

t
r
f
t-

ed

these coarse-grainings as a function ofDx andDt.

A. Random walk

We take an initial condition where all histories begin
the initial pointx050 and assume that at each time step
particle has an equal chance of moving right (x→x11) or
left (x→x21) on a discrete spatial lattice. There are thenN

fine-grained histories with equal probability 1/2N and all
other histories have probability 0. We assume that the lat
has a large finite sizeV with periodic boundary conditions
relating its ends. The history space entropy is given by
~2.17! where Tr(Pa) is the number of fine-grained historie
in a coarse-grained historyca . For all histories with the
coarse-graining described above this is

Tr~Pa!5~Dx!N/DtVN(121/Dt). ~3.1!

Simple as this is, it is clear that as the number of fin
grained histories increases rapidly with the number of tim
n5N/Dt, and calculating entropies by summing over all t
fine-grained histories in each coarse-grained history rap
becomes impractical. Instead, we use a Monte Carlo
proach: we generate a large sample of fine-grained histo
bin them together into coarse-grained classes, and calcu
the entropies from the resulting probability estimates. T
technique works in the continuous case as well.

In Fig. 1 we plot the history space entropyShs of the
random walk model as a function of theDx and Dt. We
clearly see that the entropy rises steeply when the coa
graining is increased by increasingDt and more moderately
asDx is increased. IncreasingDx to V at a fixed time gives

FIG. 1. History space entropy,Shs, for the discrete random walk
as a function of coarse-graining scalesDx andDt. In this system, a
particle begins atx50 on a 1D lattice of 256 points and moves le
or right by one position with equal probability at each ofN5128
times. The entropy is measured in bits of missing informati
These results were produced by a Monte Carlo simulation w
100 000 random trajectories; because of the rapid rise inShs with
coarse-graining, theDx and Dt axes are plotted on a logarithmi
scale.
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the maximal coarse-graining where the only alternatives
(I ,0). Therefore, increasingDx to V for any fixed value of
Dt will give the maximum possible entropy, associated w
the alternativeP5I . That is, from Eq.~3.1! ~the 2(plog2 p
term vanishes!,

Shs
max5N log2 V. ~3.2!

IncreasingDt for fixed Dx gives a closely related limit
When Dt is at its maximum value ofN, Shs is the single
time entropy plus (N21)log2 V @cf. Eq. ~2.28!#. The single
time entropy ranges fromN log2 2 for Dx51 to N log2 V for
Dx5V. Thus, for largeN we expectShs to be essentially
Shs

max and that behavior is also illustrated in Fig. 1.
The maximum value ofShs for the particular model simu

lated is N log2 V, which in this case is 1024 bits. This
reflected on the plot. At the other extreme, the minimu
entropy occurs forDt5Dx51, and isShs5128 bits. The
finest graining included in Fig. 1, isDt5Dx52, and we see
that Shs has already risen steeply at that point.

B. Continuous diffusion

A Markovian diffusion process illustrates the case wh
M is a continuous space. Take the transition probability to

p~x2 ,t2ux1 ,t1!5
1

ApDDt
exp@2~x22x1!2/DDt#,

~3.3!

whereD is a diffusion constant andDt5t22t1. Assume a
finite range sizeV, divided into cells of sizeDx, and a total
duration for the histories oft f5NDt. ChooseV@ADt f , so
that we need not worry about boundaries. We again ass
an initial condition where the particle is initially atx0.

Label the intervals of the spatial coarse-graining by
integeri, a point lying in thei th cell if iDx<x<( i 11)Dx.
The probability of a particle initially atx0 passing through a
sequence ofn cells i 1 , . . . ,i n at timest j5 j Dt is

p~ i 1 , . . . ,i n!

5E
i 1Dx

( i 111)Dx

dx1•••E
i nDx

( i n11)Dx

dxn

3)
j 51

n

p„xj , j Dtuxj 21 ,~ j 21!Dt…

5
1

~pDDt !n/2Ei 1Dx

( i 111)Dx

dx1•••E
i nDx

( i n11)Dx

dxn

3expF2(
j 51

n
~xj2xj 21!2

DDt G . ~3.4!

The history space entropy for the continuous case has ex
the same form as Eq.~2.17!, the discrete case, but it is con
venient to make use of a dimensionally invariant form of t
entropy, by subtracting a dimensional factor log2 VN. Thus,
the log2 Tr(Pa) term in Eq. ~2.17! becomes
log2@Tr(Pa)/Tr(I )#. Rather than being an integer, as in t
discrete case, it is a continuous measure of the coa
re

n
e

e

n

tly

e-

graining of each history. For the coarse-graining describ
above, with intervals of sizeDx andn5t f /Dt times, we get

log2@Tr~Pa!/Tr~ I !#5n log2~Dx/V!. ~3.5!

Dx/V,1, so log2@Tr(Pa)/Tr(I )#,0 for all but maximally
coarse-grained histories.

There are (V/Dx)n coarse-grained histories. Thep log2 p
part of the entropy in Eq.~2.17! is maximized in the case
when all the histories have equal probabilities. In this ca

max(
a

~2pa log2 pa!5n log2~V/Dx!. ~3.6!

Taking account of Eq.~3.5! we see that 0 is the maximum o
Shs so that it is strictly nonpositive. This is different from
usual definitions of entropy, which are logarithms of lar
numbers and hence always positive. However, what is
portant is the change inShs under coarse-graining or refine
ment, not its absolute value.

We can gain some insight by looking at the limiting b
havior ofShs for different levels of coarse-graining. Consid
first the coarse-grained limit whereDx→V. As Dx becomes
large compared toADt f , it becomes highly improbable tha
the particle will ever diffuse outside of a single celli. Thus,
in this limit, one history dominates with a probabilityp'1
while the others are suppressed,p'0, and the2(plog2 p
part of the entropy vanishes. At the same time, the te
log2@Tr(Pa)/Tr(I )#5n log2(Dx/V) approaches 0 as well, s
this maximal coarse-graining inx leads toShs→0; Shs is
maximized by maximal coarse-graining inx.

Let us go now to the opposite limit, whereDx!V. We
can now label the intervali j by the valuexj centered in that
interval. The probability to go fromxj 21 to xj is

p~xj uxj 21!5
Dx

ApDDt
expF2

~xj2xj 21!2

DDt G . ~3.7!

The p log2 p term for a single history is then

2p~x1 , . . . ,xn!log2 p~x1 , . . . ,xn!

52
n

2
log2S Dx2

pDDt D p~x1 , . . . ,xn!1S (
j

~xj2xj 21!2

DDt D
3S Dx2

pDDt D
n

expF2(
j

~xj2xj 21!2

DDt G . ~3.8!

Summing over all histories is the same as summing
above expression over all thexj . These sums can be ap
proximated by integrals, which are readily evaluated to yi

(
a

~2pa log2 pa!'n log2SApDt f

Dx D 2
n

2
~ log2 n21!.

~3.9!

Adding the expression for log2 Tr(Pa)/Tr(I ) from Eq. ~3.5!
gives for the entropy

Shs'n log2SApDt f

V D 2
n

2
~ log2 n21!,0, ~3.10!
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i.e., Shs approaches a constant negative value in the limi
small Dx for a fixedDt.

Suppose now that we holdDx fixed and vary the coarse
graining in t. If we go to the maximum coarse-grainingDt
5t f , we return to the case of alternatives at a single time
the probability of the particle being in the intervali is pi , the
entropy is just

Shs52(
i

pi log2 pi1 log2~Dx/V!, ~3.11!

differing from the usual single-time entropy only by a co
stant.

If instead we refine the description in time, the result
quite different. As the time stepDt becomes small compare
to Dx2/D, the probability of a particle moving from on
interval to another in a time step becomes small as w
Beyond that point, refining the description of the system
time does not increase the actual number of alternative
tories with nonzero probabilities. Thus,

2( p log2 p→const. ~3.12!

The log2@Tr(Pa)/Tr(I )#5n log2(Dx/V) term, however, does
change as we increasen. Because this term is negative, as w
increase the fine-graining int, the history space entropyShs
decreases without limit.

In both x and t, the entropy is diminished by making th
description more fine-grained. Thus, we expect the same
havior as in the simple random walk: the entropyShs ~and

FIG. 2. History space entropy,Shs, for continuous diffusion as a
function of coarse-graining scalesDx andDt, in bits. All particles
begin atx50 on a 1D manifold of lengthV520, and spread with
diffusion constantD51 through a finest-grained net ofN51024
times with minimal time steph50.01. The finest-grained cell siz
is Dx50.1. We have subtracted off the maximum entropyN log2 V
to render our results invariant under dimensional rescaling and
finements in time; the maximum entropy is thus 0, andShs is not
bounded below. These results were produced by a Monte C
simulation with 10 000 random trajectories.
f

If

ll.
n
is-

e-

thus, all other measures of entropy for histories that we h
considered! will be minimized by the most fine-grained de
scription. We performed a numerical calculation to gener
the entropy plot in Fig. 2. Note that the qualitative behav
is exactly the same as in Fig. 1.

C. Brownian motion

In the previous examples, we assumed an explicitly M
kovian time evolution. If we relax that assumption and su
pose that the probability of a historyp(x1 , . . . ,xn) does not
have the formp(xnuxn21)•••p(x2ux1)p(x1), are our conclu-
sions affected?

As a simple example of a non-Markovian process, co
sider a particle undergoing Brownian motion. In addition
inertia and dissipation, the particle is subjected to a stoch
tic force. We can write a stochastic differential equation
its motion in Itô form:

dx5~p/m!dt,
~3.13!

dp522Gpdt1adj,

wheredj is a stochastic differential variable with zero me
and variancedt,

M ~dj!50, M ~dj2!5dt. ~3.14!

This stochastic equation corresponds to a Fokker-Pla
equation for probability densitiesr(x,p,t) in phase space
@13#:

dr

dt
~x,p!52S p

mD ]r

]x
~x,p!12G

]

]p
pr~x,p!1

a2

2

]2r

]p2 ~x,p!.

~3.15!

We can enumerate a set of coarse-grained histories
Brownian motion just as we did for the continuous rando
walk, dividing up the rangeV into cells of sizeDx and di-
viding the total time of the historiest f into n steps ofDt
each. An individual coarse-grained history consists of
fine-grained histories which pass through a given set of
tervalsi 1 , . . . ,i n at timest j5 j Dt.

Histories ofx(t) are not Markovian because of the exi
tence of the inertia term2(p/m)]r/]x in Eq. ~3.15!. How-
ever, looked at over relatively long timesDt@1/G the inertia
becomes unimportant, as dissipation dominates. On th
long time scales, the system is well approximated by
continuous diffusion model~3.3! with D5a2/8G2m2. On
very short time scales, by contrast, inertia dominates. T
particle drifts at a near-constant velocity, only slightly d
flected by dissipation and noise.

We see that the same arguments we used in the cas
continuous diffusion apply to this case with little modific
tion. Fine-graining int reduces the entropy without limit
Fine-graining inx is a little less clear, but a similar argume
can be made. In the limit of fine-grainedx, we can approxi-
mate the probability of a history as

p~x1 , . . . ,xn!5~Dx/Q0!nf ~x1 , . . . ,xn!, ~3.16!
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where f (x1 , . . . ,xn) is dimensionless andQ0 is a constant
with units of length, which depends onDt but not Dx. We
can replace the sum over all histories in Eq.~2.17! with n
integrals over thexj , and get

Shs52
1

Q0
nE dx1•••dxn f ~x1 , . . . ,xn!log2 f ~x1 , . . . ,xn!

2n log2~Dx/Q0!1n log2~Dx/V![S01n log2~Q0 /V!,

~3.17!

whereS0 has noDx dependence. Since theDx dependence
has dropped out completely, we see that in this case as
the entropy approaches a constant as we fine-grain inx.

In Fig. 3 we show the numerical results for the entropy
coarse-grained histories of the Brownian motion model a
function of coarse-graining inx and t. This graph clearly
shows essentially the same behavior ofShs with coarse-
graining as in Figs. 1 and 2.

IV. THE SECOND LAW FOR HISTORIES

A. The increase of entropies

The familiar second law of thermodynamics concerns
behavior of the entropy of a fixed set of coarse-grained
ternatives at a moment of time as this time is varied. W
shall call such entropies ‘‘single-time entropies.’’

If the value of a single-time entropy at some particu
time t0 is all that is known about a system, and if that val
is much lower than the maximum~equilibrium! value, then
that entropy will subsequently tend to increase for most
namical laws of interest. If the dynamical law is time sym
metric aboutt0, then the approach to equilibrium will also b

FIG. 3. History space entropy,Shs, for Brownian motion as a
function of coarse-graining scalesDx andDt, in bits. All particles
begin with (x,p)5(0,0) on a 1D manifold of lengthV520, with
dissipation 2G51, noise strengtha51, and massm51. The
finest-grained net of times and minimum cell size are as in Fig
and the same conventions are used here in displayingShs. These
results were produced by a Monte Carlo simulation with 10 0
random trajectories.
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symmetric aboutt0. However, it is not just this statistica
tendency to approach equilibrium that is usually meant
the second law of thermodynamics. Rather, it is the gen
increase in entropy of suitable coarse-grained description
the Universe since the big bang. In particular, what is me
is that, for the most part, certain entropies of presently i
lated systems are increasing in the same direction of ti
The time-asymmetric increase of these entropies of the U
verse arises from a cosmological initial condition at whi
those entropies were low. As Boltzmann put it, ‘‘The seco
law of thermodynamics can be proved from the mechan
theory if one assumes that the present state of the univ
. . . started to evolve from an improbable state’’@14#.

The entropies that are most useful in chemistry and ph
ics are associated with quasiclassical coarse-grainings w
fix the values of averages over suitable volumes of dens
of approximately conserved quantities such as energy,
mentum, and abundances of chemical and nuclear spe
Their utility arises from the approximate conservation. T
small volumes over which the averages are taken reach l
equilibrium on short time scales, leaving the approach
equilibrium between volumes to be described by pheno
enological equations such as the Navier-Stokes equation
longer time scales. The single-time entropy of these coa
grainings is low in the early universe leading to a gene
tendency to increase.

Statements of the second law often refer to the increas
‘‘the’’ entropy as though there were only one possib
coarse-grained description for which it holds. What is me
by ‘‘the’’ entropy is usually the single-time entropy of th
alternatives defining the quasiclassical realm of everyday
perience described above. However, we should expect
general increase of the entropy ofany set of coarse-grained
alternatives which is low in the initial moments of the un
verse. To give just one example, the single-time entropy o
set of quasiclassical alternatives$Pa% increases with time
when conditioned on various other quasiclassical alternat
$Pb%. Indeed, such entropies

S~$Pa%,tub,t8! ~4.1!

are the ones of practical interest. The entropy of a gas in
a piston is the entropy of alternatives referring to the g
giventhe configuration of the piston. There are thus a vari
of coarse-grainings and conditions for which the missing
formation increases with time.

B. The increase in history entropies

Sets of alternative, coarse-grained histories provide m
general coarse-grained descriptions of the Universe than
of coarse-grained alternatives at merely one time. The co
sponding entropies of histories should also increase w
time if they are low at the time of the system’s initial co
dition. For example, consider a set of histories consisting
a series of alternatives$Pan

n %, . . . ,$Pa1

1 % at a sequence o

time t1 , . . . ,tn giving a histories entropy

Shs~$Pan

n %,tn ; . . . ;$Pa1

1 %,t1!. ~4.2!

If Shs is initially low, and these times are all translated fo
ward by an amountT, we would expect

,
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Shs~$Pan

n %,tn1T; . . . ;$Pa1

1 %,t11T! ~4.3!

to increase withT.
A proof of the second law even for single entropies exi

only for highly idealized situations.~See, e.g.,@15#.! That is
partly because entropy does not monotonically increase
fluctuates about an increasing trend. We can therefore ha
expect a mathematical proof of the increase of Eq.~4.3! with
T. However, the connection ofShs with the step-by-step en
tropy supports this in the following way.

Consider histories consisting of alternatives at just t
times t1 and t2. Then from Eqs.~2.27! and ~2.28!,

Shs~$Pa2

2 %,t2 ;$Pa1

1 %,t1!5(
a1

p~a1!S~$Pa2

2 %,t2ua1 ,t1!

1S~$Pa1

1 %,t1!1const, ~4.4!

where the constant is independent oft1 ,t2 and the alterna-
tives. Ast1 increases, the second term in Eq.~4.4! increases.
That is just the usual second law. The first term can also
expected to increase as botht1 andt2 move away from a low
entropy initial condition, providedPa1

1 is sufficiently coarse-

grained that the initial condition plays an important role
determining future probabilities.

The sequence of times necessary to specify a set of h
ries presents a variety of possibilities for investigating
change in entropy. We have already discussed a unif
translation of all the times. However, we could also disc
increasing the separation between the times. For exampl
the two-time case of Eq.~4.4!, Shs increases ast1 is fixed and
t22t1 increases. Indeed, that is just a special case of
usual second law@cf. Eq. ~4.1!#.

C. The urn model

An exactly soluble model which nicely illustrates the i
crease in history space entropy is the urn model of Ehren
and Ehrenfest@16#. The model concerns 2R numbered balls,
each of which is in one of two urns,A or B. The system
evolves throughN discrete time steps. At each time a numb
from 1 to 2R is chosen and that ball is moved from i
present urn to the other. Fine-grained histories are spec
by giving the urn containing each ball at each of theN times.
A simple kind of coarse-grained history specifies the num
of balls in one urn, sayA, at one timet. The kind of multi-
time, coarse-grained histories we shall study are specifie
giving the number of balls inA, (n1 , . . . ,nn) at a sequence
of the N times t1 , . . . ,tn .

The probabilities relevant for constructing the entrop
can be worked out@16,17#. The probability of a transition
from one time to the next is

p~nj 11 ,t j 11unj ,t j !5
2R2nj

2R
dnj 11 ,nj 111

nj

2R
dnj 11 ,nj 21 .

~4.5!

Given that the number of balls in urnA is n0 at time t0, the
probability thatA will contain nj balls at timet j is
s
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p~nj ,t j un0 ,t0!5~21! j222R (
l 52R

R

~ l /R! jCnj

l CR1 l
R2n0 , ~4.6!

where the coefficientsCk
l are defined by the identity

~12z!R2 l~11z!R1 l[(
k50

2R

Ck
l zk. ~4.7!

All the rest of the probabilities we shall need are easily co
structed from Eqs.~4.5! and ~4.6!.

Consider, by way of example, the history space entro
for the set of histories specified by giving the number of ba
in A at two timest j andt j 1m assuming an initial condition in
which n0 balls are inA at t0. We call these ‘‘two-time his-
tories’’ for short. From Eq.~2.17! this is

Shs~$nj 1m ,nj%!

52 (
nj 1m ,nj

p~nj 1m ,nj un0!log2 p~nj 1m ,nj un0!

1 (
nj 1m ,nj

p~nj 1m ,nj un0!log2S 2R

nj 1m
D S 2R

nj
D

1~N22!log2~22R!. ~4.8!

The probabilityp(nj 1m ,nj un0) is obtained by multiplying
Eq. ~4.6! by a factor of Eq.~4.8! for each of them times
betweent j andt j 1m and summing over the intermediate va
ues ofnk , j ,k,m. There are 22R ways of arranging the
balls among the urns at each time so that a binomial coe
cient gives the number of arrangements of balls in whichn
are in urnA. Thus,

Tr~ I !522R, Tr~Pn!5S 2R

n D . ~4.9!

It takes of order 2R time steps to share informatio
among the 2R balls, and that is the order of characteris
relaxation time for entropies to increase to their maximu
value @17#. This is the case for the entropies of two-tim
histories ast1 and t2 are increased keeping their differenc
constant; this was suggested by Eq.~4.4! and shown by Fig.
4. The relation~4.4! shows that the maximum value~not
including the neglected times! is roughly twice the maximum
entropy for single time coarse-grainings of this type.

This relation also indicates thatShs should grow with the
same characteristic relaxation time ast22t1 is increased,
keepingt1 fixed. The increase comes from the first term
Eq. ~4.4!. Again, the maximum value reached lies betwe
one and two times the maximum for single-time coar
grainings by the number of balls in one urn. This behavio
also evident in Fig. 4~though for larget1 the increase is
almost saturated at the initial time!.

Increasing the number of times included in each history
a fine-graining. At a given value oft1, the entropy should
decrease as more times are included. This behavior is il
trated in Fig. 5 for 2R5n0530. This shows the behavior o
one-, two-, and three-time history space entropies as a fu
tion of t1, wheret25t111 andt35t112. All the entropies
increase to maximum values on roughly the time scaleR.
Asymptotically from Eq.~4.4!, the entropies behave like
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S1~ t1!2c, ~4.10!

whereS1 is the single-time entropy andc is independent of
t1 for the urn model but depends on the number of times
the values of the time differences.

FIG. 4. History space entropy,Shs, for two time histories of the
Ehrenfest urn model as a function oft1 andm5t22t1, in bits. In
the case shown there are 2R530 numbered balls distributed be
tween urnsA andB, with all the balls initially in urnA. In Figs. 4
and 5 we have set the total number of fine-grained times arbitra
at N53; a larger, more realistic number would merely add a c
stant displacement toShs.

FIG. 5. History space entropy,Shs, for one, two, and three time
histories of the Ehrenfest urn model versus the first specified ti
t1, in bits. The times of the two and three time histories are se
rated by single time steps. The parameters and initial conditions
the same as in Fig. 4.
d

V. QUANTUM HISTORY SPACE ENTROPY

Isham and Linden posited their family of entropies~2.23!
on the basis of the property that they decrease under fi
graining. We were able to show that the classical anal
could be derived from a Jaynes construction for the casx
51. In this section we show that quantum history spa
entropy can be similarly derived as a preliminary to a mo
general discussion of its connection with other entrop
@19#.

Consider a set of decoherent alternative histories$ca%,
each history with a probabilitypa and represented in histor
space by a projectorPa . Define an entropy functional on
history space operatorsW by

S~W̃!52Tr~W̃ log2 W̃!. ~5.1!

Then maximizeS(W̃) over allW̃ for which Eq.~5.1! is real,
subject to the condition that

Tr~PaW̃!5pa . ~5.2!

The result is that the maximum is given by

W̃5(
a

pa

Pa

Tr@Pa#
, ~5.3!

and the entropy is

Shs~$ca%!52(
a

pa log2 pa1(
a

pa log2 Tr~Pa!, ~5.4!

analogous to Eq.~2.17!.
The Jaynes construction immediately makes clear why

x51 history space entropy decreases on fine-graining. Th
are more conditions constraining the maximum in Eq.~2.14!
in a fine-graining of a set than in the set itself. The maximu
can therefore only be lower. For other values ofx it is suf-
ficient to note that

I x~$ca%!5Shs~$ca%!2Tr~ I !1~x21!(
a

pa log2@Tr~Pa!#.

~5.5!

This too decreases with fine-graining, as follows from t
result for I 1 and the convexity of the logarithm.

Thus, history space entropy can be given a unified c
struction through a Jaynes procedure both classically
quantum mechanically. What can be done classically butnot
quantum mechanically is to express the probabilities forall
decoherent histories in the form

pa5Tr~PaW! ~5.6!

for one positive operatorW, independent of the set of alter
natives. There is no quantum-mechanical analog of Eq.~2.9!.
Were there one, quantum mechanics would be equivalen
a classical stochastic theory. Itis possible to find history
space operatorsW which reproduce the probabilitiespa
through Eq.~5.6! for any decoherent set. For example, va
expressions for the probabilities of decoherent histories, s
as

ly
-

e,
a-
re



y
v

t
o

a
e
er
o-
fie
e.
d
rs

o

dy-
uld
m a
e
tic
lly.
will
al
ets

e,
ter-
re,
ter-
for
m
of

the
um
ies,

ll-
p-
he
s.

6380 PRE 59TODD A. BRUN AND JAMES B. HARTLE
pa5Tr„Pan

n ~ tn!•••Pa1

1 ~ t1!r… ~5.7!

can be transcribed into history space using the identity@12#

TrH~A1•••An!5Tr^ kH@~A1^ •••^ An!,S#, ~5.8!

where

Suv1& ^ •••^ uvk&5uvk& ^ uv1& ^ •••^ uvk21&. ~5.9!

However, the resultingW’s are not positive, even when the
can be arranged to be Hermitean. For this reason, e
though quantum analogs ofSdc($ca%) and Sic($ca%) can be
defined, the derivations of the inequalities relating them
Shs($ca%) like Eq. ~2.39! do not immediately generalize t
quantum mechanics.

VI. CONCLUSIONS

Information is contained not only in sets of alternatives
a single moment of time, but more generally in sets of alt
native histories — sequences of sets of alternatives at a s
of times. A variety of measures of the information in hist
ries are available. In this paper we have provided a uni
construction of all of these through the Jaynes procedur
follows from these constructions that these entropies
crease under fine-graining and increase under coa
graining. We illustrated this in a few simple models.

We expect entropies for histories to share other comm
in
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properties analogous to the usual second law of thermo
namics. In particular, the entropy of a set of histories sho
increase as that set is translated forward in time away fro
low entropy initial condition. We illustrated this with th
classical urn model, but expect it to hold for more realis
dynamical laws, both classically and quantum mechanica

General sets of alternative coarse-grained histories
not exhibit deterministic correlations in time in a classic
stochastic theory. However, sufficiently coarse-grained s
of historiesmayexhibit deterministic behavior. For exampl
the unpredictable motion of single atoms yields nearly de
ministic laws for the hydrodynamic variables of pressu
temperature, and density. Characterizing the level of de
minism is an interesting question related to the search
measures of classicality in quantum theory. It is clear fro
our discussion that no entropy of histories is a measure
determinism. Entropy is reduced by fine-graining, and
finest-grained histories are not deterministic. In quant
theory, therefore, we cannot expect an entropy of histor
by itself, to be a measure of classicality.
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